WEB SERVICES: UMA NOVA VISÃO DA ARQUITETURA DE APLICAÇÕES DISTRIBUÍDAS NA INTERNET

TAMAE, Rodrigo Yoshio

Docente da Faculdade de Ciências Gerenciais e Jurídicas de Garça – FAEG/Garça

LIMA, Pablo Rodrigues

Discente do 5º Termo do Curso de Sistemas de Informação da FAEG/Garça

RESUMO

Este trabalho tem por objetivo apresentar uma visão inicial da tecnologia dos Web Services e tentar demonstrar seu potencial como ferramenta de transformar a Internet em uma base real para desenvolvimento de aplicações orientadas a negócios com total independencia de plataforma.

Palavras-chave: Web Service, Interoperabilidade e Computação distribuída.

ABSTRACT

The objeticve of this work is presents an initial vision about Web Services Technology and try to demonstrate its potential like a tool to became the Internet in a real base to oriented-business application development with platform independence.

Keywords: Web Service, Interoperability and Distributed Computing.

1. INTRODUÇÃO

O poder gerado pela disseminação da informação e pelo rápido crescimento das tecnologias de comunicação, como as redes de computadores e a internet, tem afetado diretamente os mais diferentes ramos de atividades cientificas e profissionais.

Não é difícil perceber que a Internet tornou-se o principal veículo de comunicação utilizado mundialmente para acesso, recuperação e utilização de informações. Neste contexto, o termo Web Service vem criando bastante empolgação quando se fala do futuro da arquitetura de aplicações distribuídas. Mais do que isso, esta tecnologia é promovida como uma nova arquitetura que deve mudar o modo como a Internet é vista e utilizada.

A proposta da arquitetura é criar uma coleção de funções empacotadas e dispostas em um ponto da rede, de forma que as mesmas possam vir a ser usada livremente por outros programas, sem a necessidade de um massivo programa de reestruturação tecnológica.

Diversos outros padrões surgiram dentro do conceito da computação distribuída, chamados de Objetos Distribuídos, como o CORBA (*Common Object Request Broker*, da OMG), o RMI(*Remote Method Invocation*, da Sun) e o DCOM(*Distributed Component Object Model*, da Microsoft).

Apesar de ser bem aceita, a arquitetura CORBA não se tornou um padrão, fato este que atingiu igualmente os demais padrões. A justificativa para isso é simples: o que desmotivou o uso destes padrões foi a necessidade de migrar todo o código legado para as novas plataformas, reescrita de códigos e adaptação as novas formas de trabalho de cada arquitetura. Além disso, os padrões aparentemente mais promissores pecam pela falta de suporte por parte das linguagens de programação distintas. O DCOM tem performance inaceitável no mundo corporativo. O padrão RMI, por exemplo, é implementado exclusivamente para chamadas entre objetos Java, fato que o impede de se relacionar como um objeto remoto com uma aplicação escrita em C++, COBOL ou qualquer outra linguagem. Adicionalmente a tudo isso, esta o fato de que a adaptação a uma nova plataforma acarreta em custos e gera toda uma carga de assimilação a nova tencologia para usuários, clientes e programadores.

Desta forma, desenvolvedores e fornecedores de tecnologia não tinham uma plataforma que facilitasse a integração entre os diversos sistemas existentes. Eram inúmeras arquiteturas e somente um esforço conjunto poderia criar um mecanismo para o desenvolvimento de um padrão realmente interoperável. Este processo teve início com a tecnologia XML (*Extensible Markup Language*) por ser independente de plataforma e orientado a descrição de dados.

O principal atrativo de um Web Service esta em suas características de implementação: os protocolos que compõem a arquitetura baseiam-se principalmente em padrões aceitos e amplamente adotados pelo mercado, como o HTTP (*Hiper Text Transfer Protocol*) e a linguagem padrão de representação de dados XML. Em resumo, um Web Service utiliza todos os recursos já existentes e largamente utilizados que compõem a Internet e World Wide Web Atual.

O fato de usar o protocolo HTTP para troca de mensagens faz com que qualquer Web Server possa, sem nenhuma dificuldade, passar a atender requisições por Web Services.

O uso de XML para a descrição das informações também é um ponto forte da arquitetura, já que a linguagem vem se tornando um padrão universal. O XML torna a representação de dados independente de linguagem e de plataforma, de tal forma que um tipo de dado descrito em XML possa ser convertido para representações específicas dentro de cada plataforma ou linguagem por basear-se em formato texto.

Toda esta corrida por procurar estabelecer um padrão aberto e amplamente aceito tem como objetivo garantir a interoperabilidade e a manuntenção de código legado, evitando custos astronomicos de um processo de reengenharia tecnológica.

A interoperabilidade é um dos pontos fortes da tecnologia dos Web Services. A idéia é aproveitar todo o código legado – seja ele escrito em Visual Basic, Delphi (Object Pascal) ou COBOL – e transformá-lo em uma funcionalidade pronta para ser utilizada por um outro programa escrito em qualquer outra linguagem. Como todas as camadas da arquitetura são descritas usando a linguagem XML, o cliente pode ser escrito em uma linguagem diferente daquela usada pelo provedor de serviço. A implementação dos protocolos da arquitetura de Web Service nas diversas plataformas de programação se encarrega de promover esta conversão transparente dos dados.

2. DEFININDO WEB SERVICES

Web Services são conjuntos de aplicações autodescritivas que podem ser publicadas, localizadas e invocadas através da Web. Estas aplicações podem ser desde simples processos como troca de mensagens a complexas transações comerciais ou industriais como um processo de compra de mercadorias. Uma vez que um Web Service é publicado, outras aplicações (ou até mesmo outros Web Services) podem acessá-los e invocá-los, tanto para obtenção de dados como a interação com serviços que uma organização oferece (TAMAE, 2004).

Um Web Service é acessado através de protocolos e formatos de dados independentes de plataforma como o HTTP, XML e SOAP. A interface de um Web Service é acessível através de mensagens XML padronizadas e, portanto, em formato texto. São descritos utilizando um padrão formal chamado *descrição de serviço* que envolve os detalhes necessários para a interação com o serviço, incluindo o formato das mensagens, tipos de dados e localzação.

Um solicitante de um serviço descreve as características do serviço procurado e utiliza o provedor de registro para localizar um serviço apropriado. Uma vez localizado, a informação na descrição do serviço é utilizada para interação entre cliente e servidor. A descoberta, a invocação dinâmica de serviços e uma colaboração baseada em mensagens permite o desenvolvimento de aplicações distribuídas com enorme grau de interoperabilidade.

3. SOAP - SIMPLE OBJECT ACCESS PROTOCOL

O SOAP originou-se da idéia de um mecanismo de RPC (*Remote Procedure Call –* Chamada Remota de Procedimento) baseado em linguagem XML, originalmente proposto por Dave Winer em 1998. O SOAP foi desenvolvido e descrito pela IBM, Lotus Development Corporation, Microsoft, Development-Mentor e Userland Software e é suportada pela Sun Microsystems (FREIRE, 2002).

SOAP é um protocolo baseado em HTTP-XML que permite que aplicativos se comuniquem facilmente pela Internet, utilizando documentos XML chamados de mensagens SOAP. É compatível com qualquer modelo de objeto, já que incluem funções e capacidades que são absolutamente necessárias para definir uma estrutura de comunicação. Portanto, SOAP é independente tanto de plataforma como de software e pode ser implementado em qualquer linguagem de programação. Suporta transporte utilizando quase todos os protocolos disponíveis. Por exemplo, SOAP pode ser associado ao HTTP e seguir o modelo de

solicitação-resposta de HTTP. O SOAP suporta também qualquer método de codificação de dados (DEITEL, 2003).

O protocolo SOAP é o elemento central da arquitetura de Web Service. Mas, não é o único. A medida que a IBM e Microsoft começaram a trabalhar suas implementações, surgiu a necessidade de novos protocolos. Além de um protocolo de troca de mensagens, foram divulgados também dois outros padrões: um protocolo de localização de objetos e um esquema de representação de dados.

Para permitir o armazenamento e localização de um Web Service foi proposto o UDDI (*Universal Description Discovery and Integration*). Este protocolo dita como Web Services podem ser registrados e localizados na rede. Já o padrão WSDL (*Web Service Description Language*) foi o último dos tres protocolos que compõem a arquitetura e foi lançado algum tempo depois do UDDI. Para descrever os objetos, parâmetros e dados de forma universal, foi criada uma gramática descritiva de objetos e serviços baseados em XML. É a linguagem que descreve um Web Service, de forma que é possível para o cliente saber quais funcionalidades um dado serviço disponibiliza (FERGUSON, 2004).

4. CONCLUSÃO

Os Web Services ainda estão em estágio de maturação e seu futuro é quase certo, pois, resolve uma questão crucial da área de tecnologia que é a integração de sistemas ou, ainda, facilitar o acesso a informações dentro de um sistema.

Inúmeras aplicações surgem a cada dia e é certo que os melhores usos dos Web Services ainda não foram pensados. Inicialmente, as aplicações serão serviços simples, o que não implica dizer que os Web Services não poderão efetuar tarefas complexas.

Os Web Services surgiram num momento crucial onde a Internet começava a se tornar um meio de comunicação direta no mundo dos negócios. Apesar de ser uma tecnologia relativamente nova e apresentar problemas potencias de segurança, o que pode ser visto é um investimento cada vez maior dos grandes *players* (como, por exemplo, IBM, Sun e Microsoft) no desenvolvimento da tecnologia dos Web Services. Esta visão pode traduzir todo o grande entusiasmo gerado pelos Web Services e pela provável adoção em massa no que diz respeito a computação distribuída na Internet.

Os Web Services, mais do que qualquer outra tecnologia de interoperabilidade que surgiu, tem tudo para se tornar a base da revolução na Internet, no que diz respeito ao uso em massa da Internet como plataforma de negócios.

5. REFERÊNCIAS BIBLIOGRÁFICAS

DEITEL, H.M. Internet & World Wide Web – Como Programar. 2.Porto Alegre, RS, Brasil: Ed. Bookman, 2003.

FERGUSON, D.F. Secure, Reliable, Transacted Web Services: Architeture and Composition. White-paper: IBM Corporation & Microsoft Corporation. Disponível em: www.306.ibm.com/software/solutions/webservices/pdf/SecureReliableTransactedWSAction.pd f>. Acesso em: janeiro de 2004.

FREIRE, H. **Web Services: A Nova Arquitetura da Internet**. Developer's CIO Magazine, São Paulo, N.73, p.24-25, Setembro, 2002.

TAMAE, R.Y. **SISPRODIMEX – Sistema de Processamento Distribuído de Imagens Médicas com XML** – Qualificação de Mestrado. PPGCC-UNIVEM – Fundação Eurípides de Marília, São Paulo. Março de 2004.